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A statistical thermodynamic interpretation of homogeneous dispersive kinetics (which assumes the
existence of a pseudo-equilibrium between a distribution of reagent states and a single activated state, which
together define the rate-determining step), coupled with a previous “quantum kinetic” description for
this same type of system (Skrdla, P. J.J. Phys. Chem. A2006,110, 11494), is found to provide new insights
into the kinetics of these conversions. In particular, the change in the (apparent) activation energy with
conversion time is shown to be a function of the entropy change associated with the ensemble of reagent
molecules as they traverse the activation energy barrier. Using these two “orthogonal” stochastic interpretations
of dispersive kinetics, a fundamental physical description of the rate parameterâ in the author’s model is
obtained.

Introduction

From the literature, it is known that the specific (i.e.,
concentration-independent) reaction rates of chemical reactions
or physical transformations are strongly dependent on the
efficiency of the over-barrier transitions (e.g., those that are
thermally activated) or, in certain cases, quantum mechanical
tunneling through the activation energy barrier. For conversions
in which the activation energy is unique, the specific reaction
rate (i.e., the rate constant) is single-valued. However, for
systems exhibiting “dispersive kinetics”, the activation energy
evolves as the conversion proceeds, thus giving rise to a time-
dependent rate constant. This change in the (apparent) activation
energy, which is a function of the time/extent of conversion, is
caused by a continuous “system renewal” (i.e., relaxation) as
the conversion proceeds. Such renewals are often attributed to
molecular motion occurring on a time scale that is similar to,
or slower than, that of the actual conversion. The impact of
this motion on the conversion rate gives rise to dispersive
kinetics, examples of which include solid-state phase transfor-
mations, reactions of biomolecules, and electron transfer in
viscous media.1,2

This article is one in a series of recent works in which a new
approach for modeling/describing dispersive kinetics is devel-
oped. The author believes that many reactions and phase
transformations involving the solid state (in particular, those
that are rate-limited by nucleation/denucleation processes
involving small “critical nuclei”; the rates of formation of these
smaller nuclei lend themselves to a quantum mechanical
description of the kinetics that might differ significantly from
the kinetics predicted using classical nucleation theory) are
inadequately described by traditional kinetic models that do
not account for the quantized, molecular-level energy variations
that might be responsible for causing the observed dispersion
in the activation energy barrier and that utilize unitless
(i.e., empirical) fit parameters. The author believes that the
specific reaction rate of dispersive kinetic processes can be
accurately described using a convolution of the Maxwell-
Boltzmann (M-B) kinetic energy distribution and the traditional

Arrhenius equation (which introduces the fixed, potential energy
component of the overall activation energy barrier). The M-B
distribution is used to describe the quantized energy dif-
ferences that ultimately give rise to the activation energy
distribution in dispersive conversions (e.g., assuming nucleation/
denucleation of an ideal gas, as a first approximation). The
Arrhenius equation is used to convert the activation energy
distribution into a corresponding distribution of rate con-
stants and, ultimately, a time-dependent expression for the
overall, macroscopic (i.e., observable) rate constant of the
conversion.3,4

For example, in many solid-state conversions, the M-B
distribution can account for the differences in molecular reaction
times that originate from variations in spatial location inside
the condensed matter (i.e., it might take longer for a molecule
residing within the condensed phase to react than one located
at the surface). Note that these differences in reaction times can
be related to corresponding differences in the (apparent)
molecular activation energies via the Arrhenius equation, as
mentioned above. Essentially, the author has attributed the origin
of the dispersion to variations in thekinetic energycomponent
of the overall activation energy, which are of similar magnitude
to the (fixed) potential energycomponent, in commonly
observed dispersive conversions.4

Focusing only on “homogeneous dispersive kinetics” for the
purposes of this work (as opposed to “heterogeneous dispersive
kinetics”4), the author’s model (discussed more later), unlike
other dispersive kinetic models in the literature, uses only two
rate parameters (R andâ) to fit isothermal conversion data. Both
of the parameters have units in the time domain, thus allowing
physical interpretation. In a previous work,4 a physical inter-
pretation for the rate parameterR was described. In the present
work, the author provides a statistical thermodynamic treatment
of his kinetic model that can be considered to parallel the work
of Eyring (who considered only nondispersive, bimolecular
reaction kinetics). The findings point toward a possible link
between stochastic “activation entropy” evolution and the
conversion time for dispersive kinetic processes. Using this
approach, a physical interpretation for the rate parameterâ is
obtained.* Tel.: 908-232-0572. E-mail: skrdla@earthlink.net.
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Results and Discussion

In classical kinetics (as described by the Arrhenius and Eyring
equations), a unique activation energy barrier is typically defined
between a set of reactants and products on a potential energy
surface (PES) for elementary reactions or for each individual
mechanistic step of a more complex conversion. For the latter
processes, one is often most interested in the activation energy
barrier of the rate-determining step (rds), as it has the highest
value and thus it dictates the overall speed of the conversion.
The author believes that, in systems exhibiting dispersive
kinetics, the activation energy barrier (e.g., of the rds) should
be defined stochastically, by utilizing the functional form of
the M-B distribution.

Note that the author is generally not supportive of the
traditional view of chemical kinetics in which only the fraction
of molecules in the “high-energy tail” of the M-B distribution
have sufficient energy to react. That is because this view is a
static one and the study of kinetics inherently involves dynamic
processes. Therefore, such an interpretation of “classical Ar-
rhenius kinetics” is likely too simplistic to apply to dispersive
processes.

As mentioned in the Introduction, if molecular dynamics is
important in affecting the rate of reaction, dispersive kinetics
is born. The author’s view of (homogeneous) dispersive kinetics
is one in which the M-B distribution of molecular kinetic
energies (and, consequently, activation energies) is allowed to
morph over time, i.e., it is a function of the extent of conversion.
Even at a constant temperature (as isothermal conditions are
required for use of the author’s kinetic models), whereby this
distribution can be expected to have a fixed shape, the
continuous depletion (via reaction) of the molecules in the high-
energy tail, and the subsequent attempt at redistribution of the
remaining reagent molecules to re-form this tail, results in a
varying fractional population of molecules that are available to
react at any given time. (Note that this view of a microscopically
“staged/segmented” reaction, with respect to time, is consistent
with the idea of quantization of the activation energy barrier,
which is inherent in the author’s use of the M-B distribution
to define a distribution of molecular-level activation energies/
rate constants.) Ultimately, the net result is a time-dependent
rate constant/activation energy for the overall (macroscopic)
conversion. Thus, it can be stated that homogeneous dispersive
kinetics is governed by the limited ability of a given reagent
population to redistribute thermal energy (i.e., to relax) on the
time scale of the conversion. Conversely, classical Arrhenius
kinetics (which can be adequately described by a single potential
energy barrier of activation) applies to systems in which the
thermalization is very rapid with respect to the reaction (and
thus can be neglected in the treatment of the kinetics). Whereas
the connection between temperature and (average molecular)
kinetic energy is well-known, as is the effect of temperature on
the reaction rate in systems exhibiting classical Arrhenius
kinetics, the combined use of both kinetic and potential energies
to describe the activation energy barrier in dispersive conver-
sions is particular to the author’s works.

The author has defined two types of dispersive kinetics that
areobservableinthesolidstate: homogeneousandheterogeneous.3-5

The former conversions have been characterized by dispersion
in the kinetic energies of thereagent species, and they generally
produce deceleratory, sigmoidal conversion versus time (x-t)
profiles; examples of such conversions include certain (denucle-
ation-rate-limited) solid-state thermal decompositions. On the
other hand, heterogeneous dispersive processes are characterized
by a similar variation in the kinetic energies pertaining to the

actiVated-state species, and they generally produce acceleratory,
sigmoidalx-t profiles; examples include some (nucleation-rate-
limited) crystallizations and polymorphic transformations. Note
that, although both types of conversions generally produce
asymmetric sigmoid transients, in heterogeneous/acceleratory
processes, the inflection point occurs more toward the end of
the conversion, whereas in homogeneous/deceleratory processes,
the inflection point typically occurs earlier in the conversion.
For the purposes of this work, only homogeneous dispersive
kinetics is discussed, although the conclusions drawn are
expected to hold similarly for heterogeneous systems (because
they can be treated in a complementary manner4).

Using the Kohlrausch-Williams-Watts (KWW; stretched
exponential) function and assuming molecular motion obeying
the continuous-time random-walk (CTRW) model, the general
form of the time-dependent rate constant in dispersive/“fractal
time” kinetics can be defined as1,2

whereΛ° andεa° represent the frequency factor and potential
energy of activation, respectively (i.e., as per the Arrhenius
equation);kB is the Boltzmann constant;T is the absolute
temperature;τ is the effective relaxation time; andm is an
empirical dispersion parameter. From eq 1, the activation energy
can be observed to vary with time according to the equation

For nucleation-rate-limited processes, the theory derived by
Johnson and Mehl and Avrami, Erofe’ev, and Kolmogorov1,2

has been applied widely in the literature since its development
in the late 1930s/early 1940s. More recently, Plonka has shown
that the so-called “JMAEK equation” is a general result of the
above dispersive kinetics approach, which is based on the
concept of fractal time.6 The JMAEK equation can be written
most simply as

where x represents the fraction of reagent remaining in the
system at timet. Unfortunately, the value ofn in eq 3, which
is unitless (and can be considered analogous tom), is often
empirical because it does not precisely match any of the
established mechanisms (i.e., those withn ) 2, 3, or 4; for
example, see ref 5) when fitting real kinetic data.

An alternative approach to modeling dispersive kinetics (that
does not use fractals) was presented in the author’s previous
works.3-5 For isothermal, homogeneous dispersive processes,
the author’s “semiempirical” dispersive kinetic model is given
by3,4

where the (temperature-dependent) rate/fit parameters,R and
â, have units of (time)-1 and (time)-2, respectively, and the
variablesx andt are defined as in eq 3. For such processes, the
activation energy varies with the conversion time according to
the expression4

In Figure 1, two energy level diagrams, corresponding to two
different homogeneous dispersive processes, are depicted sche-
matically (side-by-side). Previously, a similar graphic was
discussed in terms of both a kinetic energy distribution,D(ε),

k ) Λ°(t/τ)m-1 exp(-εa°/kBT) (1)

εa(t) ) εa° + (1 - m)kBT ln(t/τ) (2)

x ) exp(-ktn) (3)

x ≈ exp{(Rt)[exp(-ât2) - 1]} (4)

εa(t) ≈ εa° + kBTât2 (5)
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and a fixed potential energy barrier,εa°, to define εa(t).4

However, the author believes that it should also be possible to
define the dispersion (i.e., what is shown in the reagent/
“monomer” population in the figure) in terms of thermodynamic
quantities, by similarly utilizing a stochastic view of the kinetics.
Such a description might be especially useful for understanding
dispersive conversions in some processes (i.e., heterogeneous
conversions) involving the solid state in which the key
constituents are not readily mobile (i.e., it might not be easy to
envision kinetic energy variations of molecules in condensed
phases/critical nuclei) as they are in gas-phase reactions.

In the last century, Marcus theory showed that it is possible
to predict activation energies in terms of classical thermody-
namic quantities for simple unimolecular processes. Later,
Eyring’s transition state theory (TST) demonstrated, on the
molecular level, the origin and physical behavior of the transition
state (TS) species responsible for defining the activation energy
barrier, this time, for simple bimolecular conversions. TST
applies statistical mechanics to the rapid “pre-equilibrium”
assumed to exist between the reagents and the TS species.
Below, a similar attempt at applying statistical mechanics is
described; however, this time it is used for the treatment of
homogeneous dispersive conversions. The goal is to try to gain
new insights into dispersive kinetics by linking both the
thermodynamic and kinetic interpretations of these conversions.
(Note, for example, that Maresˇ and Šesták implied a possible
link between entropy and kinetic energy in a recent publication.7)

For crystals, relatively low-energy quantized vibrations, called
phonons, are responsible for solid-state properties such as
thermal/electrical conductivity and sound travel. Thermal phonons
can exhibit desirable properties for energy quantization in solids
that can ultimately produce a distribution such as the one
depicted schematically in Figure 1. Although phonons exhibit

both particle-like and wave-like properties, they are generally
classified as bosons with integer spin. In analogy with Planck’s
treatment of blackbody radiation, one can consider the phonons
in a solid to be an ensemble of harmonic oscillators. Thus,
Bose-Einstein (B-E) statistics can be used to describe the
energy distribution of phonons in a given solid. However, B-E
statistics is most useful at low temperatures/high concentrations
(e.g., in a “B-E condensate”) where the quantum concentration,
nq (i.e., the interparticle distance), is high; this occurs whenN/V
g nq (N is the number of molecules/atoms/ions occupying
volume V). Furthermore, B-E statistics considers all of the
particles in the ensemble to be indistinguishable. Although the
M-B distribution effectively treats both B-E and Fermi-Dirac
(F-D) statistics at highT, more importantly, it considers the
particles in a crystal as being distinguishable. (As mentioned
in the Introduction, because various monomers can occupy
different spatial locations inside a given condensed phase, they
can be expected to react at different times/with different
activation energies.) For this reason, the author believes that
the M-B (kinetic energy) distribution is superior to the other
two energy distributions in describing general dispersive kinetic
processes. Note also that, whereas Maresˇ and Šesták suggest
the use of an electromagnetic description of the cohesive (van
der Waals type) forces in condensed-matter quantum thermal
physics,7 the author believes that such a description is likely to
be most valid for conductors (i.e., metals). For solid phases
composed of drug molecules, for example, molecular forces
including H-bonding, ionic, aliphatic, andπ-π interactions can
also play a significant role in affecting the kinetic/thermody-
namic properties of these systems. Thus, the author favors a
general, stochastic kinetic model that does not make specific
assumptions about the origins of the quantized energies.

Regardless of whether one chooses translational, rotational,
or vibrational motion for the purposes of quantization in the
present dispersive kinetic treatment, using statistical thermo-
dynamics,8,9 one can define the following general quantities for
the monomer species in Figure 1

whereq is the partition function,ε represents the quantized
energies,N is the number of monomers in the system,U is the
total internal energy,U° is the internal energy atT ) 0 K, and
S is the total entropy. Whereas eqs 6-8 pertain to the reagent-
level (GS) distribution, as per the hypothetical homogeneous
conversions depicted in Figure 1, for the activated state (AS),
q ) 1, U - U° ) Nε′, andS) 0. (Note thatU° is assumed to
be the same for both the GS and the AS in the derivation below.)
Assuming a pseudo-equilibrium between the GS and the AS
(analogous to the assumption of Eyring) and using the change
in the Helmholtz free energy (Aact) to define the activation
energy, one finds that, for homogeneous dispersive processes

From eqs 9 and 5, one can write two relations (by assuming
that the solution is not unique)

Figure 1. Schematic energy level diagram (not drawn to scale) for
the rds of two homogeneous dispersive kinetic processes: System I
has a lower activation energy potential,εa°, whereas system II has a
higher activation energy potential. The distribution of the reagent (GS)
energy levels,D(ε), takes the functional form of the M-B kinetic energy
distribution, as described in earlier works.D(ε) can also be described
using statistical thermodynamics as discussed in the present work; in
this case, the time-dependent activation energy,εa(t), increases as a
function of the conversion time as a result of stochastic entropy loss
accompanying the over-barrier transitions (see text for details). The
energy of the activated state (AS) is considered to be single-valued in
both cases. System I is more likely to exhibit characteristic dispersive
kinetic behavior (i.e., to produce a deceleratory, sigmoidalx-t profile)
than system II.

q ) [1 - exp(-ε/kBT)]-1 (6)

U - U° ) Nε/[exp(ε/kBT) - 1] (7)

S) NkB{(ε/kBT)/[exp(ε/kBT) -1] - ln[1 - exp(ε/kBT)]} (8)

Aact ) AAS - AGS ) ∆Uact - T∆Sact )
{Nε′ - Nε/[exp(ε/kBT) - 1]} + T(NkB{(ε/kBT)/

[exp(ε/kBT) - 1] - ln[1 - exp(ε/kBT)]}) (9)

4250 J. Phys. Chem. A, Vol. 111, No. 20, 2007 Skrdla



and

Then, from eqs 8 and 11, it is trivial to obtain the result

whereR is the gas constant. Thus, a relationship between the
conversion time and the (stochastic) change in activation entropy
has been obtained via the rate parameterâ, which appears to
serve as a link between the kinetic and thermodynamic
descriptions of dispersive kinetics. In a slightly different form,
eq 12 can be recast as

In eq 13,â can be seen to have a clear physical interpretation.
(As mentioned earlier, the rate parameterR, which is also found
in eq 4, was described in detail elsewhere.4) Also, asâ is a
constant, it can be either positive or negative depending on
whether the conversion is heterogeneous/acceleratory or homo-
geneous/deceleratory, respectively;4,5 for this reason the( sign
is shown explicitly in eq 13. Using eq 13 but omitting the(
sign, one can write the following results in terms of molar
quantities [e.g.,Ea(t) ) Nεa(t)]

Equations 14 and 15 are thought to be general, i.e., applicable
to all kinds of dispersive kinetics (e.g., those that can be modeled

using eq 4 or its analogous equation for application to
heterogeneous systems4). Note that, because the sign ofâ is
negative for homogeneous dispersive conversions (it is respon-
sible for producing deceleratory, sigmoidalx-t profiles), in such
systems, the activation energy generally increases with conver-
sion time as a result of a loss in entropy resulting from the
over-barrier transitions. The opposite is true for dispersive
kinetics in heterogeneous systems, in which the sign ofâ is
positive (and the sigmoidalx-t trends are generally acceleratory
in appearance).3-5

Conclusions

The combination of the author’s previous quantum kinetic
approach for treating dispersive kinetics with a new statistical
thermodynamic treatment was able to provide new insights into
dispersive kinetic processes. Specifically, it was found that the
time dependence of the activation energy barrier (which is a
common feature to all dispersive processes) for homogeneous
dispersive conversions can be attributed to the stochastic change
in entropy experienced by the ensemble of reagent molecules
as they traverse the activation energy barrier. Ultimately, the
treatment described in this work was successful in providing a
physically relevant description of the rate parameterâ that is
used in the author’s various dispersive kinetic models.
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Ea° ≈ N{ε′ - ε/[exp(ε/kBT) - 1]} (10)

t ≈ (â-1N-1kB
-1{(ε/kBT)/[exp(ε/kBT) - 1] -

ln[1 - exp(ε/kBT)]})1/2 (11)

â ≈ ∆Sact/NkBt2 ) ∆Sact/Rt2 (12)

∆Sact ≈ (Rât2 (13)

Ea(t) ≈ Ea° - T∆Sact (14)

Ea° ≈ ∆Uact (15)

Homogeneous Dispersive Kinetics J. Phys. Chem. A, Vol. 111, No. 20, 20074251


